## 55. Potential Anti-tumour Agents. Part II. ${ }^{1}$ Polyporic Acid Series.

By B. F. Cain.
A series of substituted quinones related to polyporic acid has been prepared for evaluation against rodent-tumour systems. Limited correlations between structure and activity are made.
As an extension to the work reported in Part $I^{\mathbf{1}}$ a further series of quinones related to polyporic acid has been prepared. The materials described here have been prepared in order to investigate the effect of changing the electron density in the central quinone ring and varying the lipophilic properties.

Monosubstituted polyporic derivations have been prepared by arylation of 3,6 -di-chloro-2-phenyl-1,4-benzoquinone with aryl diazoacetates; the resultant 5 -aryl dichloro2 -phenylquinones were readily hydrolysed by aqueous-methanolic potassium hydroxide to the dihydroxyquinones. Symmetrically disubstituted derivatives were made by similar arylation of 2,6 -dichloro-1,4-benzoquinone.

The $p$-alkylanilines required for synthesis of some of these materials were conveniently prepared by rearrangement of the $N$-alkylanilines. ${ }^{2}$ Difficulty was experienced with diazotization of some of the bases of higher molecular weight owing to insolubility of their salts and their derived diazonium salts; this was overcome by preparing the $N$-acetyl derivatives and from these the $N$-nitrosoacetamides which served directly as a source of diazoacetate and could be used without the necessity of buffering the solution with sodium acetate. This is the method of choice for preparing these compounds, if it is possible to obtain the $N$-nitrosoacetamide.

The compounds having n-alkyl and $\omega$-phenylalkyl side chains in place of one phenyl ring of polyporic acid were prepared by adaptation of Fieser and Oxford's alkylation method. ${ }^{3}$ In this method intermediates which were more easily manipulated were obtained by treating

[^0]${ }^{2}$ Hickinbottom, $J ., 1937,1120$.
${ }^{3}$ liieser and Oxford, $J$. Anncr. Chem. Soc., 1942, 64, 2060.
the acyl peroxide with the dichloroquinone rather than with the corresponding dihydroxyquinone. The $\omega$-phenylalkanoic acids and the $\omega$-phenylalkanoyl peroxides required were prepared by the procedures described by Fieser et al. ${ }^{4}$

By using the acute lymphocytic leukemia L1210 in mice, under standard conditions, as a test system it can be shown that, of the derivatives described here and in Part I, ${ }^{1}$ those which have strong electron-donating or -attracting substituents are inactive. Those with less powerful substituents (halogen, alkoxyl, alkyl) retain anti-leukemic activity in some degree. One phenyl ring may be replaced by another hydrocarbon substituent ( n -alkyl, $\omega$-phenylalkyl) and activity still be retained. Progressive homologation of an alkyl side chain first increases and then decreases anti-leukemic effectiveness. The most active of the derivatives described so far, under the test conditions used, is $2-p$-ethylphenyl-3,6-dihydroxy-5-phenyl-1,4-benzoquinone.

## Experimental

3.6-Dichloro-2-p-tolyl-1,4-benzoquinone.—To a vigorously stirred solution of 2,5-dichloro-1,4benzoquinone ( 35.4 g .) in ethanol ( 800 ml .) and ether ( 800 ml .) was added a solution of toluene-$p$-diazonium chloride ( $1 \cdot 1 \mathrm{~mol}$.), prepared in the minimum volume of water, together with sufficient aqueous sodium acetate to neutralize the excess of mineral acid present in the diazonium solution. After 2 hours' stirring, the solution was evaporated to 500 ml . and a crude product precipitated with water (11.). This solid was extracted with boiling $1: 4$ aqueous

2,5-Dichloro-1,4-benzoquinones.

| Ph ${ }^{\text {3-Subst. }}$ |  |  | Found (\%) |  |  |  |  | Required (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6-Subst. | Solvent* | M. p. | C | H | $\mathrm{Cl} \ddagger$ | Formula | C | H | $\mathrm{Cl} \ddagger$ |
|  | $o$-Tolyl | MeOH | 143-144 ${ }^{\circ}$ | $66 \cdot 2$ | $3 \cdot 2$ | 20.8 | $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $66 \cdot 5$ | 3.5 | $20 \cdot 7$ |
| ,, | $m$-Tolyl | EtOH | 180-181 | $66 \cdot 1$ | $3 \cdot 2$ | 20.7 | $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $66 \cdot 5$ | $3 \cdot 5$ | $20 \cdot 7$ |
|  | $p$-Tolyl | HOAc | 212-213 | $66 \cdot 4$ | $3 \cdot 6$ | 20.7 | $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | 66.5 | $3 \cdot 5$ | 20.7 |
| $o$-Tolyl | o-Tolyl | EtOH | 171-173 | 66.9 | $3 \cdot 9$ | $19 \cdot 6$ | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $67 \cdot 2$ | 3.9 | $19 \cdot 8$ |
| $m$-Tolyl | $m$-Tolyl | EtOH | 217-218 | $67 \cdot 0$ | $3 \cdot 8$ | 19.7 | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $67 \cdot 2$ | $3 \cdot 9$ | $19 \cdot 8$ |
| $p$-Toyl | $p$-Tolyl | HOAc | 288-290 | 66.9 | $3 \cdot 9$ | $19 \cdot 7$ | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $67 \cdot 2$ | $3 \cdot 9$ | $19 \cdot 8$ |
| $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ | Ph | EtOH | 188-191 | $59 \cdot 1$ | $2 \cdot 3$ | $29 \cdot 1$ | $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$ | $59 \cdot 4$ | 2.5 | $29 \cdot 3$ |
| $m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ |  | EtOH | 188-189 | 59.5 | $2 \cdot 6$ | 29.2 | $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$ | $59 \cdot 4$ | 2.5 | $29 \cdot 3$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ |  | $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}$ | 234-235 | $59 \cdot 6$ | $2 \cdot 6$ | 29.3 | $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$ | $59 \cdot 4$ | 2.5 | $29 \cdot 3$ |
|  | $p$-Tolyl | A | 235-236 | $60 \cdot 8$ | $2 \cdot 9$ | 27.9 | $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{2}$ | $60 \cdot 4$ | 2.9 | $28 \cdot 2$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ | ,, | A | 255-256 | $54 \cdot 4$ | $2 \cdot 3$ | (35.3) | $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrCl}_{2} \mathrm{O}_{2}$ | 54-1 | $2 \cdot 6$ | (35.7) |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$ | ,, | EtOH | 273-274 | 63.0 | 3.0 | - | $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{FO}_{2}$ | $63 \cdot 2$ | $3 \cdot 1$ | (3.7) |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OMe}$ | ," | A | 268-269 | $64 \cdot 2$ | $3 \cdot 6$ | 19.0 | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $64 \cdot 4$ | $3 \cdot 8$ | $19 \cdot 0$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OAc}$ | Ph'' | A | 240--242 | 62.7 | $3 \cdot 6$ | 17.5 | $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$ | $62 \cdot 9$ | 3.5 | 17.7 |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$ | Ph | EtOH | 280-281 | $62 \cdot 2$ | $2 \cdot 7$ | - | $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{FO}_{2}$ | $62 \cdot 3$ | $2 \cdot 6$ |  |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$ |  | $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}$ | 228-229 | $47 \cdot 6$ | $2 \cdot 2$ |  | $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{IO}_{2}$ | 47.5 | 2.0 |  |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ | $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ | B | 295-296 | 54.5 | $2 \cdot 0$ | $35 \cdot 2$ | $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{O}_{2}$ | $54 \cdot 3$ | $2 \cdot 0$ | $35 \cdot 6$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4}^{4} \mathrm{Br}$ | $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ | A | 303-304 | $44 \cdot 3$ | 1.8 | (48.0) | $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $44 \cdot 4$ | $2 \cdot 1$ | (47.4) |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OMe}$ | $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OMe}$ | A | 258-259 $\dagger$ | $61 \cdot 7$ | 3.5 | 18.4 | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$ | $61 \cdot 7$ | 3.6 | $18 \cdot 2$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Et}$ | Ph | C | 205-206 | 67.0 | $3 \cdot 7$ | $19 \cdot 6$ | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $67 \cdot 2$ | 3.9 | $19 \cdot 8$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{n}}$ | , | $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}$ | 149-150 | $67 \cdot 6$ | $4 \cdot 4$ | $19 \cdot 1$ | $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $67 \cdot 9$ | $4 \cdot 3$ | $19 \cdot 1$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{n}$ | ,' | $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}$ | 156-157 | $68 \cdot 6$ | $4 \cdot 6$ | 18.3 | $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $68 \cdot 6$ | $4 \cdot 7$ | $18 \cdot 4$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{5} \mathrm{H}_{11}$ | , | EtOH | 132-133 | $69 \cdot 0$ | 4.9 | 17.9 | $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $69 \cdot 2$ | $5 \cdot 1$ | $17 \cdot 8$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{13}$ |  | EtOH | 137-138 | $69 \cdot 6$ | $5 \cdot 5$ | $17 \cdot 1$ | $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $69 \cdot 7$ | $5 \cdot 4$ | 17.2 |
| $p$-Toly ${ }^{\text {a }}$ | $p$-Tolyl | AcOH | 288--289 | 67.0 | $3 \cdot 7$ | $19 \cdot 7$ | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $67 \cdot 2$ | $3 \cdot 9$ | $19 \cdot 8$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Et}$ | , , | D | 270-271 | $67 \cdot 7$ | $4 \cdot 3$ | $19 \cdot 1$ | $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | 67.9 | $4 \cdot 3$ | $19 \cdot 1$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{n}}$ | ," | A | 202--203 | 68.5 | $4 \cdot 7$ | 18.3 | $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $68 \cdot 6$ | $4 \cdot 7$ | 18.4 |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{\mathrm{n}}$ |  | A | 182-183 | $69 \cdot 1$ | $5 \cdot 0$ | $17 \cdot 7$ | $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $69 \cdot 2$ | $5 \cdot 1$ | 17.8 |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OMe}$ | Ph | EtOH | 184-186 | $63 \cdot 4$ | $3 \cdot 1$ | $19 \cdot 6$ | $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $63 \cdot 5$ | $3 \cdot 1$ | 19.7 |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OEt}$ | , | EtOH | 159-160 | $64 \cdot 1$ | $3 \cdot 7$ | $19 \cdot 1$ | $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $64 \cdot 4$ | $3 \cdot 8$ | $19 \cdot 0$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OPr}^{\text {n }}$ | ,, | EtOH | 159-160 | $65 \cdot 0$ | $4 \cdot 3$ | 18.4 | $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $65 \cdot 1$ | $4 \cdot 2$ | $18 \cdot 3$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OBH}^{\mathrm{n}}$ | , | EtOH | 157-158 | $65 \cdot 6$ | $4 \cdot 4$ | $17 \cdot 6$ | $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $65 \cdot 9$ | 4.5 | 17.7 |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OC}_{5} \mathrm{H}_{11}$ |  | EtOH | 158-159 | 66.1 | 4.7 | $17 \cdot 3$ | $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $66 \cdot 5$ | 4.9 | $17 \cdot 1$ |
| $p-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OC}_{6} \mathrm{H}_{13}$ | " | EtOH | 154-156 | $67 \cdot 0$ | $5 \cdot 0$ | 16.7 | $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{3}$ | $67 \cdot 1$ | $5 \cdot 2$ | 16.5 |

* $\mathrm{A}=$ Ethylene glycol monoethyl ether. $\mathrm{B}=$ Ethylene glycol diacetate. $\mathrm{C}=$ Diethylene glycol. $\mathrm{D}=$ Diethylene glycol monoethyl ether. $\dagger$ Derivative of atromentin; Akagi (J. Pharm. Soc. Japan, 1942, 62, 191) gives m. p. 253-254 ${ }^{\circ} . \ddagger$ Figures in parentheses are for total halogen.

[^1]

* First purified through the sparingly soluble Na salt. $\dagger$ With decomp. $\ddagger$ Atromentin dimethyl ether; Agaki (J. Pharm. Soc. Japan, 1942, 62, 191) gives m. p. 295-297․ § With 2 mols. of pyridine of crystallization. ** Found: $\mathrm{Cl}, 10 \cdot 3$. Reqd.: $\mathrm{Cl} 10 \cdot 4 \%$. $\dagger \dagger$ Found: $\mathrm{Br}, 20 \cdot 4$. Reqd.: Br , $20 \cdot 7 \%$. $\ddagger \ddagger$ Found: $\mathrm{Cl}, 19 \cdot 4$. Reqd.: $\mathrm{Cl}, 19 \cdot 1 \%$. I| Found: $\mathrm{Br}, 26 \cdot 8 \%$. Reqd.: $\mathrm{Br}, 26 \cdot 3 \%$.
ethanol ( 500 ml .). The residue ( 7.5 g .) was crude $2,5-$ dichloro- $2,5-$ di-4'-methylphenyl-3,6-dip -tolyl-1,4-benzoquinone (see Table). The extracts, on cooling, deposited the monoarylbenzoquinone which was crystallized once from aqueous ethanol and once from acetic acid, the pure product ( 22.5 g .) forming orange needles, m. p. $146-147^{\circ}$ (Found: C, $58.3 ; \mathrm{H}, \mathbf{3 . 0} \mathbf{0} \mathrm{Cl}, 26.2$. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires C, $58 \cdot 4 ; \mathrm{H}, \mathbf{3} \cdot 0 ; \mathrm{Cl}, \mathbf{2 6} \cdot 6 \%$ ).

3,6-Dichloro-2-phenethyl-5-phenyl-1,4-benzoquinone.-The following outlines the procedure used in the peroxide alkylation method. A freshly prepared and standardized ${ }^{3}$ ether solution of $\beta$-phenylpropionyl peroxide ( 1 mol .) was introduced below the surface of a solution of 3,6-dichloro-2-phenyl-1,4-benzoquinone ( 5 g .) in acetic acid ( 50 ml .) so that the temperature remained at $90-95^{\circ}$. Heating was continued for $\frac{1}{2} \mathrm{hr}$. after visible gas evolution ceased. After removal of the solvent and crystallization from ethanol, yellow needles ( $5 \cdot 9 \mathrm{~g}$.) of the quinone, m. p. $94-96^{\circ}$, were obtained (Found: C, $67 \cdot 1 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{Cl}, 19 \cdot 8 . \quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires C, $67.2 ; \mathrm{H}, 3.9 ; \mathrm{Cl}, 19.8 \%$ ). Hydrolysis with sodium hydroxide by the described method ${ }^{1}$ gave the dihydroxy-quinone ( 5.2 g .) (see Table). Repetition of the synthesis without intermediate purification of the dichloroquinone gave the dihydroxyquinone ( $6 \cdot 3 \mathrm{~g}$.) after hydrolysis and crystallization.

Biological results mentioned in this paper were obtained through the courtesy of Dr. J. F. Burton of these laboratories. Microanalyses are by Dr. Campbell of the microchemical laboratory, University of Otago. The above research was supported by the Auckland Division of the New Zealand Branch of the British Empire Cancer Campaign Society (Inc.).

Cancer Research Laboratory, Cornwall Hospital,
Auckland, S.E.4, New Zealand.
[Received, July 3rd, 1962.]


[^0]:    ${ }^{1}$ Part I, $J ., 1961,936$.

[^1]:    ${ }^{4}$ Fieser et al., J. Amer. Chem. Soc., 1948, 70, 3174.

